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Abstract 

We consider the general problem of electromagnetic wave propagation through a one-dimensional system consisting of a 
nonlinear medium sandwiched between two linear structures. Special emphasis is given to systems where the latter comprise 
Bragg-reflectors. We obtain an exact expression for the nonlinear response of such dielectric superlattices when the nonlinear 
impurity is very thin, or in the S-function limit. We find that both the switching-up and switching-down intensities of the 
bistable response can be made very low, when the frequency of the incident wave matches that of the impurity mode of 
the structure. Numerical results for a nonlinear layer of finite width display qualitatively similar behavior, thus confirming 
the usefulness of the simpler b-function model. In addition, an analytical solution for the resonance states of an infinitely 
extended finite width superlattice with a finite width nonlinear impurity is presented. Finally, we investigate the adequacy of 
the Kronig-Penney S-function model in describing the electromagnetic wave propagation in periodic structures consistent of 
thin layers of materials with an intensity-dependent dielectric constant. Copyright 0 1998 Elsevier Science B.V. 

1. Introduction 

Dielectric materials with an intensity-dependent dielectric constant are well known for their complex response to 

radiation. Exciting features such as bistability, multistability, optical limiting, etc. have been predicted theoretically 
[ 1,2] and observed experimentally [3-51. Promising future applications include optical switches and transistors, 
pulse shapers as well as memory elements. Already quite simple structures like the traditional Fabry-Perot etlons 
[3] or multilayered structures of alternating nonlinear dielectric materials [6] exhibit such a behavior. The common 
characteristic of all nonlinear optical devices is the feedback mechanism, necessary to enhance the nonlinear 
effects. Crudely speaking, there exist two types of realizations: In the case of a “localized’ feedback structure a 
homogeneous nonlinear medium is placed between two reflectors (mirrors [3,7] or Bragg-reflectors 181) while 
“distributed” feedback mechanisms are realized through a periodic modulation of the linear part of the nonlinear 
materials’ refractive index [I]. Similar studies have been done for the electronic response in a one-dimensional 
nonlinear lattice [9-l 11, as well as for a linear lattice with nonlinear impurities [ 121. 
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The linear (or low intensity) properties of the feedback mechanism are important for the nonlinear response ot 

the device. For instance. a distributed feedback structure gives a photonic band gap ( I3,14], where certain modes 

are forbidden while others propagate freely. For frequencies inside the transmission band. bistability results from ;t 

modulation of transmission by an intensity dependent phase shift. For frequencies inside the stop gap of the lineal 

system. bistability and resonance transmission is achieved via gap soliton formation [IS. 161. 
However. nonlinear media are usualy quite lossy and. thus it is important to find ways of keeping the amount of 

nonlinear material small while still retaining sizable nonlinear effects. Furthermore. the successful use of optical 

switches depends crucially on a low threshold, i.e. low “switching” intensities. The above considerations lead to 

the question whether a single nonlinear layer, suitably supplied with a feedback mechanism. may be sufficient 

for optical switching devices. In this paper we present the results of our investigation of this and ae\,eral related 

problems. The paper is divided into two parts: The first part deals with the general case of a “localized” fecdbach 

structure when the nonlinear layer is very thin. or in the &function approximation. WC nil1 give arguments why a 

system consistent of a nonlinear layer sandwiched between Bragg-reflectors may be considered the most efficient 

“localized” feedback structure, as well as which system’s parameters give the lowest bistability threshold. We also 

demonstrate the usefulness of the b-function approximation by comparin g with numerical results for a nonlinear 

layer of finite width. However. a finite nonlinear layer always exhibits multistability This is illustrated in the scc- 

ond part of this paper, where we present an analytical solution for the resonance states of an infinite superlattice 

with a tinite width nonlinear impurity layer. These are modulated band sap impurity modes and corrchpond to the 

transmission resonances in the multistable input vs. output diagram. Finally. in the third part. we cxtcnd the investi- 

gation on the usefulness of the S-function approximation by comparing the results derived from the Kronig-Penny 

S-function model with direct numerical solutions of wave propagation in nonlinear superlattices of linitc thickness. 

We find that the Kronig-Penney S-function model captures most of the essential features of the nonlinear response 

in superlattice structures. The global transmission diagrams from the two methods are in excellent agreement with 

each other. However. some disagreement does exist. most significantly below the bottom of the transmission band. 

This difference is entirely due to the rigidness of the band edge in the Kronig-Penney S-function model. ;III LIII- 
physical feature that affects the conclusion regarding the existence of gap solitons when the Kerr nonlinearity is 

positive. 

2. Very thin nonlinear layer 

Many features of wave propagation through one-dimensional nonlinear structure\ can most conveniently be 

investigated and understood within a nonlinear Kronig-Penney S-function model 1 171. Although discrepancies u ith 

the more realistic finite width models do exist. it has been demonstrated that the S-function model captures most of 

the essential features of nonlinear response to radiation [ IS]. In this section we consider a very thin nonlinear layc~ 

centered at the origin whose dielectric function 6 (.Y) is intensity dependent: 

CC\_) = C()( I + iIE(.\-)1’)6(.r). (1) 

Here t() is delined as the limit r7’d -+ ~0 for 17 + X. tl + 0. of a finite width layer of extent tl and index ol 

refraction 17. toE, is the corresponding nonlinear Kerr-coefficient. 

We first discuss the problem of a single nonlinear&function. More insight is obtained from a general discussion of a 

J-function nonlinear layer sandwiched between two linear structures. It will be shown that the equation relating input 

and output intensities has the same form as for a single nonlinear S-function except for a parameter renormalization. 

Also. a very useful phase diagram for the onset of bistability in terms of the linear properties of the system will he 

derived. From this it follows that the most interesting physics appears when the linear structures on the two sides 
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of the nonlinear layer are identical Bragg-reflectors. Assuming the latter to consist of very thin layers, we arrive at 
a remarkably simple but very rich result for the input-output intensity relation. 

2.1. Single nonlinear G-function 

We consider the problem of electromagnetic wave propagation through a single S-function with an intensity 
dependent dielectric strength as given by Eq. (1). This is schematically depicted in Fig. 1. Our interest lies in the 
steady state response of the system. Let a plane wave EuePikx with wave number k = w/c be incident from the right. 
This gives rise to a reflected wave, E,eikX, as well as to a transmitted wave, EreCikx. Solving the Maxwell equation 
with a single nonlinear &function layer at x = 0 will yield a relationship between the incident and transmitted 
intensity, Y = lEoI* and X = IE, I*, respectively: 

Y = X[l + t(1 + Lx)*], (2) 

where t = cik*/4 is related to the transmission coefficient [ToI* of the corresponding linear system, 7 = (1 - 
ITc1*)/ITul*. The system will exhibit bistability if we can have more than one output for a given input. This will 
be true if Y is a nonmonotonic function of X. We find a physical solution for dY/dX = 0 only for h < 0 and 
7 > 3: 

x =2fJ=P 
& 

3lhl . 
(3) 

The absence of bistability for a positive Kerr-coefficient is one of the artifacts of the S-function approximation. We 
will see later that this restriction is lifted, once the nonlinear &function is placed between two linear systems with 
nonzero reflection coefficients. 

The nonlinear response of such a system with negative h is shown in the input vs. output diagram in Fig. 2(a) for 
various values of 7 and h. The switching-up and switching-down intensities are given by Y+ = Y (X,), respectively. 
For 7 = 3 and h < 0 we have the onset of bistability at Y+ = Y_ = 8/(9jhl). As r gets larger, Y_ --+ l/IA1 while 
Y+ - 7/[4. Note that for Y = X = l//hi we have resonance transmission. Thus for large 7 (or equivelantly for 
low linear transmission) the switching-down intensity and the resonance intensity are the same. Clearly, the larger 
the IlLI, the smaller the switching intensities. 

E=E, (1 +hlE(0)12)6(x) 

E_P 

L 

Ere 
ikx 

+ 

4 
E. emikr 

x=0 x 

Fig. 1. Geometry considered in this section. A plane wave of amplitude Et) strikes a nonlinear d-function, giving rise to a reflected and a 
transmitted wave. 



E. Lidorikis et al. / Phyicu D I13 (1998) 346-365 349 

I 

0.0 0.2 0.4 0.6 
Input Intensity (Y) 

Fig. 2. Transmitted intensity vs. incident intensity for (a) a nonlinear &function and (b) a nonlinear dielectric slab of width d = 0.6h+. 
In both cases, the dahsed line corresponds to A = - 1 and linear transmission TO = 0.25, the solid line to I. = - I and linear transmission 
TO = 0.125. and the dot-dashed line to I = + I and linear transmission To = 0.125. Note that the bistability onset happens for the same 
system parameters. However. for large intensities the finite layer system with I > 0 will always display multistable behavior (inset graph 
in (b). for the same parameters: A. = + I. To = 0.125). The dotted line is the total transmission relation Y = X. 

Note further, that the resonance transmission intensities Y = X = l/IA1 correspond to (&I&) = ~0 = 0. i.e. the 
S-function effectively disappears altogether, leading to total transmission. On the other hand, for a tinite width linear 
layer with dielectric constant E = n*, the condition for resonance transmission is 2d = mhf, where d is the width of 
the layer and mhf is an integer multiple of the wavelength inside the dielectric material (hj = 2rc/nw) [6]. If we 
incorporate a nonlinear coefficient in the dielectric constant (E(X) = n*( 1 + hi E (x)1*)), then for suitable choices 
of the parameters we can have bistability (and even multistability) for both negative and positive Kerr medium. For 
example, if 2d < h,f and h > 0, then effectively the dielectric constant will get larger, yielding a smaller average 
effective wavelength (If). For some intensity we should expect the resonance condition to be “effectively” satistied. 
and so to get a transmission resonance. Higher-order resonances are also expected giving rise to multistability. For a 
nagative Kerr-coefficient and 2d -c hf we should not expect bistability, as correctly pointed out by Chen and Mills 
[21, unless we allow the unphysical situation at which the intensities become large enough to make (n&) 5 1. Only 
then we would get bistability, and this would be the exact correspondence to the S-function case. For a positive 
Kerr-coefficient, however, bistability should always be expected (although some times only at unrealistically high 
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intensities), a feature that is absent in the &function model. In Fig. 2(b) we show the transmission diagram for 
a finite width dielectric slab for d = 0.6k.f and various values of linear transmission coefficient and nonlinear 
Kerr-coefficient. Although this is not the exact analog of Fig. 2(a), it is remarkable that both models show similar 
dependence on their linear transmission properties. We also find that for larger intensities the negative nonlinear 
medium does not exhibit multistability, while a positive nonlinear medium will always exhibit multistability, as can 
be seen in the inset graph in Fig. 2(b). 

The unphysical condition for resonance transmission in the single nonlinear &function case can be lifted if we 
sandwich the S-function between two linear systems. Bistability will then occur as a result of the intensity dependent 
phase shift that the &function will introduce between the two linear systems, which will alter their transmission 
characteristics. As we will see in the next section, this arrangement is also optimal for obtaining lower switching 
intensities. 

2.2. Nonlinear S+nction sandwicked between two linear system 

Let us now consider a more general geometry as shown in Fig. 3. where a nonlinear &function is sandwiched 
between two linear systems, characterized by the reflection and transmission amplitudes, ri and ti (i = I, 2), 
respectively. Generally, a linear system is described by the transmission matrix relating the incoming field amplitudes 
A and D from the left and the right to the outgoing field amplitudes B and C, 

c 0 ( I/P 

D = -(r/t)* 
(4) 

Just as before, we assume this composed object to be illuminated from the right by a plane wave with amplitude 
Eu. The corresponding reflected and transmitted wave amplitudes are denoted by E, and Et, respectively. Then the 
relation between the output intensity Y = I,!$ 1’ and the input intensity X = I.&J can be obtained straightforwardly 
by properly matching the values of the fields at the origin: 

Y = X[y + r’(l + h’X)‘]. (5) 

Note that Eq. (5) has exactly the same structure as Eq. (2). Thus we have shown that the introduction of the linear 
structures leads to a renormalization of the quantities in Eq. (2): I + y, r -+ r’ and h + h’. The quantities Y, r’ 

E=E, (1 +hlE(O)l~@x) 

t 

x=0 X 

Fig. 3. The general geometry considered in this section. A nonlinear J-function is sandwiched between two general linear systems 
characterized by the reflection and transmission amplitudes r, and t;. i = I. 2. A plane wave of amplitude En incident upon the system 
from the right. results in a transmission amplitude Et and a reflection amplitude E,. 
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R 
Fig. 4. The phase diagram for the onset of bistability for a S-function sandwiched between two linear systems, as derived from Eqs. ( 13) 
and (14). 6’ and R are defined through I/To = Re” / T where TO is the total linear transmission amplitude of the two linear structures 
with the S-function in the middle (h G 0) and T is the total transmission amplitude without the S-function (6 = 0). Eq. (13) sets the 
values of R and 0 for which we can observe bistability, outside the gray areas, while Eq. (14) (dashed line) sets the sign of the nonlinear 
coefficient h for which we will observe bistability. 

where 

cos q = cos k - ikco sin k (18) 

and 

C = 1 f eok sin k 
sin Nq sin(N + 1)q 

? (19) 
sini q 

The transmission bands of the system in the linear regime are found for lcosql I 1. For band gap frequencies 
((cos q I > 1), q should be replaced by i Iq I and use the lower sign in C when cos q < - 1. 

Note that due to the renormalization of the parameters r and h, interesting features arise: r’ is now related to the 
total linear transmission coefficient of the system r’ = (1 - 1 T ~~~~~ 12)/1 TTotal 12, and the condition r’ > 3 implies 
I TToral I2 -c 0.25. Also, the constraint h < 0 is now relaxed since it requires only h’ < 0. 

In Fig. 5(a) we plot the switching-up and -down intensities of frequencies close to the first band gap. We note that 
the sign of h required to obtain bistability, between successive lobes of the linear transmission curve, is alternating 
from h < 0 to h > 0. This can be understood by means of the field configuration that characterize these lobes 
for the linear lattice and the phase shift that is introduced to them by the nonlinear &function. Also, the switching 
intensities get smaller for frequencies closer to the band gap. 

An important consequence of the introduction of the two linear systems is the presence of resonances. The phase 
shift introduced by the nonlinear S-function must be enough to tune the incident wave with the shifted resonance 
(transmission lobe). The same transmission lobes are found in the linear transmission diagram of a finite superlattice. 
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Fig. 5. Switching-up (solid line) and switching-down (dot-dashed line) intensities for a nonlinear impurity system sandwiched between 

two linear structures, The linear structures consist of (a) S-functions with N = 2O.e[) = cg = 2.5 and spacing LI = I. and as a comparison. 

(b) a system of 4 I dielectric bilayers with d,, = dh = 0.5 and ni = I, H: = 5 in analogy with the S-function system: dhnz = tt). The h 

layer in the middle of the structure is nonlinear with th(_x) = ,I;( I + E,l E(x)/‘). The dotted line in both graphs is the linear transmission 
coefficient of the structure. The hand gap starts around k = I. I86 for the S-function model and k = I .5 I for the tinite width model. 

Then, from the point of view of induced phase shifts, there should be no real qualitative difference between the 
d-function model and the finite layer superlattice, at least for the first bistable loop. The finite layer system differs 
qualitatively from the nonlinear &-function model insofar as it always exhibits multistability (the nonlinear &function 
system is strictly bistable), a point which will be discussed in Section 3. But when considering only the first bistable 
loop, the very thin layer approximation may be viewed as a reliable guide to more realistic systems involving finite 
width nonlinear layers. This is shown in Fig. 5(b) where we plot the switching-up and -down intensities of the 
first bistable loop, for a finite width layered model with a finite width nonlinear impurity layer, having its system 
parameters defined in correspondence with the a-function model by tu = dn’. In order to stress the similarity. we 
have chosen the nonlinear layer to be equal to half-a-lattice period. We see that the d-function model indeed captures 
most of the essential features of the more realistic finite width superlattice. 

If the nonlinear d-function in the middle has a linear dielectric strength cl, # ~0 then we have to use the 

renormalizations 

LI = I + 
C{) - ??O Csinq 

CO sin(2N + 1)q ’ 

(20) 

(21) 

(22) 



354 E. Lidorikis et ul. /Physicu D 113 (199X) 346-365 

1o-4 r I 

3 
w ]QJ4 L-__-_____ ---__ -\ .- 

___----- ____--- 

\ 
I 

1o-29 r 
I 1 

I.338505285 1.338505286 
Wave Vector k 

Fig. 6. The switchig intensities (solid and dot-dashed lines for switching-up and -down, respectively) for the same system of Fig. 5(a) 
for the 6 model but now for the impurity case 6; = 1. The linear impurity mode is deep in the gap (dotted line corresponds to the linear 
transmission coefficient). Note that for frequencies very close to this mode the switching intensities become extremely small. 

Similar behavior is then obtained for this impurity case, for frequencies inside the transmission band, for both 
systems. However, for band gap frequencies, and for 6; > ~0, no gap impurity mode exists in the d-function model 
so the response of the two systems inside the gap is different. For E; -C to, both systems exhibit an impurity mode 
inside every band gap [ 141. When the fields are turned on, a positive nonlinearity in the middle of the structure will 
shift the impurity mode to lower frequencies, while a negative nonlinearity will shift it to higher frequencies. As a 
consequence, when h > 0 bistability is observed at frequencies lower than that of the linear impurity mode, while 
for h -C 0 we must use higher frequencies. 

The switching-up and -down intensities are generally Y_ - l/ lh’l and Y+ - t’/ Ih’ 1, and for band gap frequencies 
it is generally t’ >> I’ >> 1, yielding extremely low switching-down intensities and extremely high switching-up 
intensities. Nevertheless, for frequencies extremely close to the linear defect frequency, it is h’ >> r’ >> 1, yielding 
extremely small switching-up intensities as well. As can be seen in Fig. 6, where we plot the switching intensities 
for a large impurity (linear impurity mode deep inside the band gap), the order of magnitude for an N = 20 system 
is well below lo-*‘, and becomes exponentially small as N gets larger. To get a feeling for this number, assume that 
typical electronic nonlinearities are of the order of lhl - lOP’5 cm’/W. Then Y+ - lo-” W/cm’. Furthermore, 
the intensity at the nonlinear defect layer is small enough, to secure that the nonlinearity is well described as a 
Kerr nonlinearity: The nonlinear effect does not saturate and the nonlinear layer will not get damaged from intense 
fields. However, the price, one has to pay to achieve low power thresholds, is to maintain extreme accuracy in the 
incident frequency, due to the extremely high Q of the mode. For the system described in Fig. 6 this accuracy is of 
the order of Ak/k - lo-“. This is quite unrealistic. This ratio gets exponentially small for increasing N. Thus, 
for a realistic application it is the laser’s line-width which determines the power thresholds for bistability and in 
general compromise has to be found. 



3. Dielectric superlattice with nonlinear impurity: Resonance states 

In Section 2. we have investigated the response of a very thin layer of nonlinear material sandwiched between 
two linear Bragg-reflector structures. We demonstrated that such a structure can exhibit bistability with very low 
switching threshold as a result of coupling to the impurity mode in the stop gap of the linear structure. In this 
section, we consider the situation when the nonlinear layer is not thin. There are qualitative differences between 
the response of a nonlinear finite width layer and a nonlinear S-function layer. We have seen that a single linite 
width dielectric layer exhibits bistability for both positive and negative Kerr-coefficients (Fig. 2(a)), whereas the 
single nonlinear J-function exhibits bistability for negative Kerr-coefficient only. Similarly and in contrast to the 
strictly histable S-function model, dielectric superlattices with a nonlinear impurity always exhibit multistability. 
This. we will show. has to do with the fact that impurity modes exist for each value of AC. We can understand 
all these properties qualitatively if we view the finite nonlinear layer as consisting of a sequence of nonlinear 
&functions. Then resonance phenomena allow to bypass the limited behaviour of a single nonlinear (S-function. 
However. multistability is much harder to detect than bistability. because the held values at the nonlinear layer may 
be very large and oscillating. 

Let us lirst investigate the localized mode solution for a finite width nonlinear layer sandwiched between two 
Bragg-reflectors. The nonlinear wave equation inside the impurity layer is given by 

&) + @I + &?(.u)]Q(x) = 0. (23) 

where kc) = rr’(w/c.). This equation may be solved by means of the following ansatz 161: 

E(.Y) = Eng(.u)e’@‘-“. (24) 

Inserting this ansatz into Eq. (23) leads to a separation of the amplitude and phase function. ,$(.v) and @(_u), 
respectively: 

(25) 

+ &$‘(.Y) + ;ik;&_r) = A. (26) 

where x = h]E()]’ is the effective nonlinearity, and A and W are constants to be determined. Upon introducing 
I (x) = $(.r). the solution may be cast in the deceptively simple form: 

I(0 

.I I 
dl 

(AI _ k’[’ _ j&3/2 _ W’)t/’ 
= 12(X - x0). 

Il!,,l 

4(x) = +(x0) + W 
s 

d.r’I 
I (X’) 

(38) 

10 

The four unknowns A, W. #(x0), I (x0) E g’(q) have to be determined from the boundary conditions at _Y(). 
In particular, W is related to the energy flux through the layer as can be seen evaluating the Poynting “vector” 
S = --L.2/8~WRe[iE*(x)(dE(x)/dx)] = c2]Eu]‘W/8 XC. In the case of k = 0 it is an easy exercise to obtain the 
linear solutions from Eq. (27). For k # 0, despite the apparent simplicity of Eq. (27), a closed form solution cannot 
be obtained in general. The reason for this difficulty is seen as follows: The solution of Eq. (27) comes down to 
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Fig. 7. The model superlattice used in this section. A nonlinear layer of dielectric constant td( 1 + AIE(x)/~) and thickness 1 centered at 
x = 0 is sandwiched between two infinitely extended superlattices of alternating layers with dielectric constants t, and th, and widths a 
and u - d, respectively. 

finding the roots of the denominator, where A and W depend on the boundary values in a complicated way. This task 
can be accomplished in two special circumstances only: If d@ (xu)/dx = 0, then, according to Eq. (25) we already 
have one root, leaving us with the simple exercise of solving a quadratic equation. Similarly, W = 0 immediately 
gives the root I = 0, again reducing the problem to a quadratic equation. The first case was exploited by Chen 
and Mills [6] in solving the transmission problem through a single finite width nonlinear layer only, without the 
superlattices on both sides. 

We, however, are interested in the second situation. Apparently, W = 0 implies S = 0. This corresponds to a 
spatially symmetric situation, i.e., a situation where parity is a good “quantum” number. Speaking in terms of the 
transmission experiment we have in mind, this amounts for solving for the stationary or resonance states for which 
input equals output. This distinction is of no importance in the linear problem, because there we can construct any 
state by an appropriate superposition of stationary states. Obviously, this cannot be done in a nonlinear problem. 
Consider now the case where the nonlinear layer, centered at x = 0, is sandwiched between two infinitely extended 
linear superlattices of alternating layers of dielectric constants E, and Eb as well as widths LI - d and d, respectively 
(cf. Fig. 7): Since the stationary states have parity p = f 1, we may impose the following values of the E-field E(0) 
and its derivative E’(0) at the origin: 

Even solution (p = 1): 

E(O)=Ea#O =+ @(O)=O, g(O)=l, E’(0) = 0 =+ g’(0) = 0. 

Odd solution (p = - 1): 

E(O)=0 =+ @(O)=W=O, g(O)=O, 

E’(0) =E&o 1 +A/2 # 0 J- =+ g’(0) = ku 1 +h/2. v’- 

Here, we have chosen the nonzero values of the field’s derivative for the odd solution in a particular convenient 
form, so that for both parities A is given by A = ki( 1 + h/2). 

To compare with numerical studies, the above equations define the value of Eu and, thus, the effective nonlinearity 
i. Consequently, for a given frequency we need to search for the symmetric states (resonant states) in the transmission 
problem and compute the field En at the origin. For given h we then get the effective nonlinearity i = h] Eu12. 

The solution I (x) will depend on both the parity and the sign of one of the roots, which depends on the sign of 
i [ 191, and is going to be expressed in terms of Jacobian elliptic functions [2 11. 
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Outside the nonlinear layer the waves obey the Block-Floquet theorem. We employ the “travelling wave” descrip- 
tion [20], which decomposes the field E(x) and (implicitly) its derivative E’(x) into left and right moving waves: 

Areikr 

E(-r) = A e_ik_~ ( 1 I 
(29) 

Within this formalism, the Block-Floquet theory for a defect state inside the photonic band gap created by the linear 
superlattice reads as (connecting the fields in the middle of one linear A-layer at x = s to the fields at x = u + S, 
where (1 is a lattice constant): 

(,M f eCY”&)E(s) = 0, 

where the matrix elements of M are well-known: 

(30) 

where k,, = (cLJ/c)~/;~,, kh = (w/c)& and Ml1 = .M;,, Ml1 = M;,. Inside the nonlinear layer we know 
the field and its derivative at the origin. Using the solutions inside the nonlinear layer, we calculate the held at 
the interface to the A-material, translate (field and derivative are continuous at the boundary!) the results into the 
travelling wave formalism and propagate them to the middle of the A-layer. i.e. we obtain E(s): 

(E) I (s) = e i’[~.’ J10 - ieikcd.’ & J1(1/2)_ (31) 
0 

@)2(s) = ((ml(s))*. (32) 

where s = (a - 1)/2 and 1 is the thickness of the nonlinear layer. Thus, (30) constitutes two linear equations, the 
second being the complex conjugate of the first. Upon separating this complex equation into real and imaginary 
part, we observe that the real part does not contain y and may thus be used to determine w: 

sin(k,(a - d)) cos(kbd) + - 1 cos(k,(a - d)) sin(kbd) 

sin(k&+(w) = 0. 

where $(w) contains the information about the nonlinear layer. Define 

(33) 

x’o’(X) = m d w-3 
k, dx ’ 

x(+‘-‘(x) = I(x) * 

Then i/~(w) is given as 

$(w) = 
cos(k,s)x’-‘(l/2) + 2 sin(ka.r)xC0)(1/2) 

x(+)(1/2) 
(34) 

where s = a - d + 1 (u = lattice constant; d = thickness of the B layers; 1 = thickness of the nonlinear layer). 
,/m and d(,/m)/dx have to be evaluated according to the sign of i and parity. Eqs. (33) and (34) define 
the solution for an impurity mode for our structure. These impurity modes manifest themselves as resonances in 
the nonlinear multistable response, for frequencies inside the gap of the linear superlattice. In the &function model 
we had one such resonance, as required from its strictly bistable character. For practical applications. the linear 
superlattices cannot be infinitely extended. However, as long as the number of the layers is large enough to have a 
well-defined localized solution, the resonant frequencies should be given exactly by Eq. (33). 
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Fig. 8. The resonance state frequencies as a function of the effective nonlinearity h inside the third band pap, The linear superlatticc 
consists of equal thickness layers of alternating dielectric constants t,, = I and th = 5. while the nonlinear layer has td = 8, I = d and 
h = I. Solid lines correspond to the analytical results while circles correspond to the results of numerical simulation using 20 bilayers 
on each side of the nonlinear layer. Filled circles correspond to states with even parity. while open circles correspond to states with odd 
parity. The gray areas correspond to parts of the third and the fourth transmission bands. 

Fig. 8 shows the resonance state frequencies as a function of i for a linear superlattice consisting of equally wide 
layers of alternating dielectric constant t,, = 1 and oh = 5. The nonlinear layer is described by .* = 8. 1 = d 
and h = I. Solid lines represent the analytical solution according to Eq. (33). while the circles correspond to the 
results of numerical simulations using 20 bilayers on each side of the nonlinear layer. In addition, the parity of 
the resonance states is indicated. Evidently, the agreement between the two methods is excellent, thus illustrating 
the multistable behavior. 

4. Nonlinear dielectric superlattice 

In Sections 2 and 3 we have investigated the response of linear superlattices with a nonlinear impurity. We have 
seen how the modulated band gap impurity mode is responsible for the bistable and/or multistable response of the 
superlattice. We now consider the case when the structure consists of alternating layers of two dielectric materials, 
one of which has an intensity-dependent Kerr nonlinearity, t = EO + cr2lE 12. The global transmission diagrams 
of such multilayer structures with a Kerr nonlinearity were investigated within a Kronig-Penney S-function model 
[ 171. It was found that the effectiveness of the nonlinearity is strongly modified by the frequency. In addition the 
nonlinear responses of the positive and the negative nonlinear media are distinctly different due to the modulation 
of the dispersion relation by the superlattice. Many dominant features were understood through the analysis of 
stable periodic orbits of the corresponding nonlinear mapping as well as the analysis of various spectrum and 
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Fig. 9. The transmission diagram for a nonlinear superlattice of L = 80 units with a positive Kerr-coefficient: (a) A-function model with 
cr = I and (h) exact solutions with linear layers of thickness 0.9. t = I. and nonlinear layers of thickness 0. I and C(I = IO. Higher bands 

(not shown) show similar behavior. 

stability bounds of the nonlinear difference and the corresponding differential equations. A simple and intuitive 
picture of the formation of gap solitons and soliton trains, based on a mechanical analogy, was also presented. These 
understandings may prove useful for incorporating nonlinearity in systems of higher dimensions, e.g.. in photonic 
band gap structures [ 131. 

All these results were based on the Kronig-Penney d-function model. Such a model offers the advantage of being 
amenable for some analytical treatment and is expected to work well when the nonlinear layer is thin compared with 
the wavelength of the incident wave. In this section we will investigate its general adequacy as well as its limitations 
by comparing the results derived from the Kronig-Penney b-function model with direct numerical solutions of wave 
propagation in nonlinear superlattice of finite thickness. 

The formulation of the steady state plane wave transmission problem in nonlinear superlattices has been described 
in detail elsewhere [ 171. The structure consists of alternating layers of two dielectric materials. one of which has 
an intensity-dependent Kerr nonlinearity, ??= to + crl]E]‘. For normal incidence of a plane wave. the electric field 
amplitude E(s) satisfies the equation 

(35) 
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Fig. 10. The transmission diagram for a nonlinear superlattice of L = 80 units with a negative Kerr-coefficient: (a) S-function model with 
o( = I; (b) linear layers of thickness 0.9, E = 1 and nonlinear layers of thickness 0.1 and ~0 = IO. 

where w is the optical frequency, and c is the vacuum speed of the light. E(X) is the dielectric constant which varies 
along the structure and depends on the local field intensity at nonlinear layers. The transmission characteristics are 
obtained by solving Eq. (35) under the boundary condition 

E(x, 11 = 
EOeikx + EreCikx for x < 0, 
E  eikx 

t forx > L, (36) 

where Eo, Et, and E, are the amplitude of the incident, transmitted, and reflected waves, respectively. Wave vector 
k = w/c, and L is the total length of the structure. The transmission coefficient T is defined as T = 1 Et 1*/IEo1*. 

Eq. (35) can be solved [6] by matching at the layer interfaces the analytical solutions in each nonlinear layer. 
which may be expressed in terms of the Jacobi elliptic functions [6]. A much simpler numerical approach, however, 
is to first discretize the structure and then iterate the difference equation numerically across the sample, starting 
from the output field Et. Our numerical results are obtained this way. 

The Kronig-Penney &function model, on the other hand, describes a system with infinitesimally thin nonlinear 
layers [ 171. In this model, the electric field obeys 

d’E(x) 2 v 

dx* 
+ 7 x(1 + hlE(x)l*)E(x)S(x -n) + k2E(x) = 0. 

?!=I 
(37) 



This can be easily rewritten [ 171 as a difference equation in terms of the field at the nonlinear layers. E,,. 

E,,+) +E,,_t +(2cosk-aksink(1 +hlE,,I’))E,,, (3X) 

where (Y = tua and J. = CQ/CY. u is the thickness of the nonlinear layers. We have assumed that the linear medium 
is a vacuum (E = I), and the distance between the neighboring nonlinear layers, d = a + h, is taken as one unit 
length. The S-function model can be viewed as an approximation when the nonlinear layer is thin compared with 
the effective wavelength within it. 

In order to compare the results obtained for the g-function model with the results obtained for the tinite width 
nonlinear layers, we have solved numerically the wave equation (Eq. (35)) for a system with nonlinear layers of 
width 0.1 unit length and linear layers (E = 1) of width 0.9 unit length. The global transmission diagrams in the 
k-E, plane for the positive Kerr-coefficient is shown in Fig. 9(b) as a grey scale plot, along with the results from 
the (i-function model (Fig. 9(a)). The general features are remarkably similar. Good agreement is also obtained 
when the Kerr nonlinear coefficient is negative (Fig. 10). These transmission diagrams show features that have been 
understood through analysis of stable periodic orbits and various spectrum and stability bounds [ 171. 

A remarkable phenomenon occurred in the nonlinear response of superlattice structures is the existence of local- 
ized gap soliton solutions in the stop band of the linear regime [6]. In the previous study [ 171 with the J-function 
model. only in the negative Kerr media did we find gap soliton solutions. This is in disaggreement with the con- 
clusion of Chen and Mills [6] that soliton solutions exist regardless of the sign of the nonlinearity. In Fig. I I. we 
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Fig. 12. The resonant transmission trajectories of single and multiple solitons in the first stop-band of an L = 80 multilayer system with 
a negative Kerr-coefficient: (a) S-function model with (Y = 0.35; (b) finite thickness bilayers with linear layers of thickness 0.9. t = I 
and nonlinear layers of thickness 0.1 and q = 3.5. 

show the transmission diagram within the stop band for a finite width superlattice with a positive nonlinear coef- 
ficient. Clearly, resonant trajectories exist. Examination of the solutions show well-localized waves symmetrically 
distributed at the center of the structure. Different resonance bands correspond to solutions containing different 
number of solitons, analogous to the situation with negative nonlinearity. Here, the inadequacy of the a-function 
model shows up, by not giving soliton solutions in the gap. For negative nonlinear coefficient, the transmission 
diagram of the superlattice structure again is in good agreement with that of the S-function model (see Fig. 12). 

To understand why the S-function model fails to describe the formation of gap soliton in superlattices with 
positive nonlinear coefficient, we have to examine the physical mechanism in which gap solitons form when 
nonlinearity is incorporated in the model. This was elucidated with a mechanical analogy in the previous work [ 17 I. 
The soliton forms only when the frequency is in the forbidden region of the spectrum in a linear system, i.e.. in 
the gap. As the wave intensity varies along the structure, the dielectric constant of the nonlinear layers changes 
accordingly. Consequently the location of the effective transmission bands moves. For the soliton to form, the 
linearized transmission band has to shift in the right direction such that the incident frequency merges into it. This 
is illustrated in Fig. 13 in which we show a single soliton profile (Fig. 13(a)) in the stop band. The corresponding 
effective transmission band edges are shown in Fig. 13(b), calculated from the linear dispersion relation using the 
local dielectric constant. Clearly, as the soliton intensity increases, the effective transmission band shifts towards 
the incident frequency and eventually takes it completely in the vicinity of the center of the soliton. 
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Fig. 13. Illustration of gap soliton formation in a system with 1, = 80 layer\ with positive nonlinearity. Linear layer\ of thickness 0.9. 

c = 1. and nonlinear layers of thickness 0.1 and 60 = 16. I, = 7.07369 and E, = 0.01: (a) profile of a gap soliton and th) the local 

effective stop-band edges as determined from the soliton profile. The stop-hand extends from the dashed line tlo~ frequcnc! btop-hand 

edge) to the solid line (high frequency stop-hand edge). The thin line is the incident frequency. Clearly. the incident frequency merge, 

inside the effective transmissmn hand around the center of the aolition. 

Examination of the effective transmission bands as a function of the effective dielectric constant in the nonlinear 
layers shows clearly the difference between the S-function model and the more realistic multilayer system (Fig. 13). 
For the negative nonlinearity (the portion below the dotted line). the collapse of the gap is described well with the 
d-function (Fig. 14(a)). But for positive nonlinearity (the portion above the dotted line). the shift of bottom of the 
bands towards lower frequency in the real system is completely missed in the S-function. This is not surprising. 
since the bottom of the band in the &function model is always located at k = err. Thus, the rigidness of the band 
edge in the S-function model prevents the frequency below the bottom of the band from merging into the effectve 
transmission band when the held intensity increases and therefore hinders the formation of gap solitona. 

We have also investigated systems with thicker nonlinear layers and found qualitatively similar behavior. Quan- 
titative agreement of course worsens as the nonlinear layer thickness increases. However. the essential features 
remain the same. Thus the S-function model seems to be sufficiently adequate for a qualitative study of nonlinear 
response to radiation. 

5. Conclusions 

We have investigated the general problem of electromagnetic wave propagation through a one-dimensional system 
consisting of a nonlinear layer sandwiched between two linear superlattices. We provide a general frame on which 
calculations can be done, based on the transmission characteristics of the linear layers. In the case of a very thin layer. 
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Fig. 14. The transmission band as a function of the effective dielectric constant at the nonlinear layers, L = 80: (a) &function model with 
(Y = 1; (b) linear layers of thickness 0.9,~ = I and nonlinear layers of thickness 0.1 and q = IO. The horizontal line indicates the bands 
in the linear regime. 

we have shown that a d-function approximation is adequate. A cubic equation is derived, describing the nonlinear 
bistable response, with normalized parameters that characterize the experimental situation. We obtain bistability in 
the gap of the linear system, via the impurity mode, and find that the switching thresholds can be made extremely 
small by enlarging the structure and/or widening the gap. An analytical solution for the localized resonance modes 
in the band gap is obtained for the finite width nonlinear layer problem. Multistability, the basic feature absent in the 
a-function model, is now obtained. Finally, we have examined many aspects of the nonlinear response in multilayer 
structures and found the d-function model quite adequate, aside from the obvious deficiency of processing a rigid 
bottom band edge. The model captures the most essential features in the transmission characteristics and therefore 
should be widely used due to its simplicity. 
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